

Reporting Services with **Geospatial Visualization**

"from address data to data-presentation in SSRS Mapcontrol in 3 steps"

Alexander Karl



Title Goes Here, 36 pt.

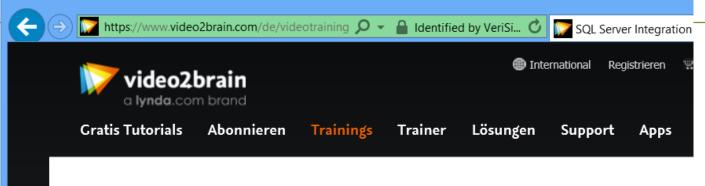
- Main Text / Bullets Here, Gray, 30 pt.
- Main Text / Bullets Here, Gray, 30 pt.
 - Bullet Points, Line 2, 26 pt.
 - Bullet Points, Line 3, 22 pt.
 - Bullet Points, Line 4, 20 pt.

About me

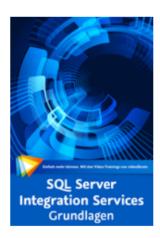
Alexander Karl

.net - CDE

SQL + BI Consultant



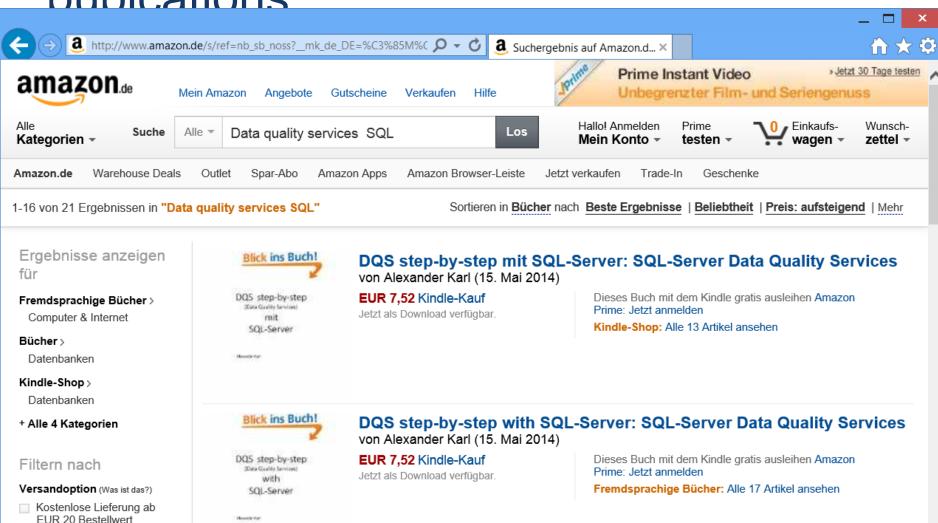
Database Administrator 2008 Server Administrator on Windows Server® 2008 Database Administrator on SQL Server® 2005


publications

Alle Video-Trainings » IT » SQL Server

SQL Server Integration Services – Grundlagen

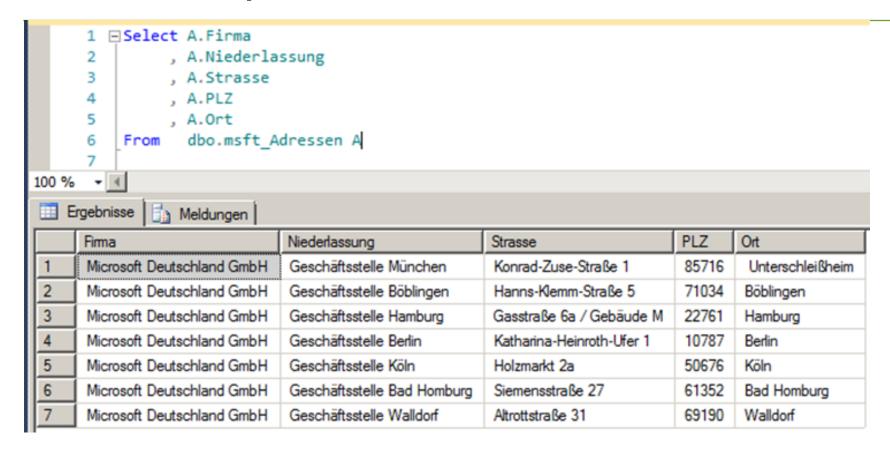
Überblick und technischer Einstieg in den ETL-Prozess


Wenn Daten aus mehreren Datenquellen in eine Zieldatenbank, insbesondere in einem Datawarehouse zusammengeführt werden, nennt man diesen Prozess Extract-Transform-Load (ETL). Dafür gibt es im Microsoft SQL Server die Integration Services. Der Datenbank-Consultant und SQL-Entwickler Alexander Karl erläutert Ihnen in diesem Video-Training die Zusammenhänge und zeigt am Beispiel, wie Sie die SQL Server Integration Services (SSIS) erfolgreich einsetzen.

Ihr(e) Trainer: <u>Alexander Karl</u> Erscheinungsdatum: **27.09.2013**

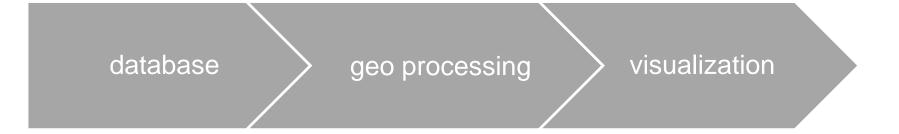
Laufzeit: 4 Std. 0 min

nubications

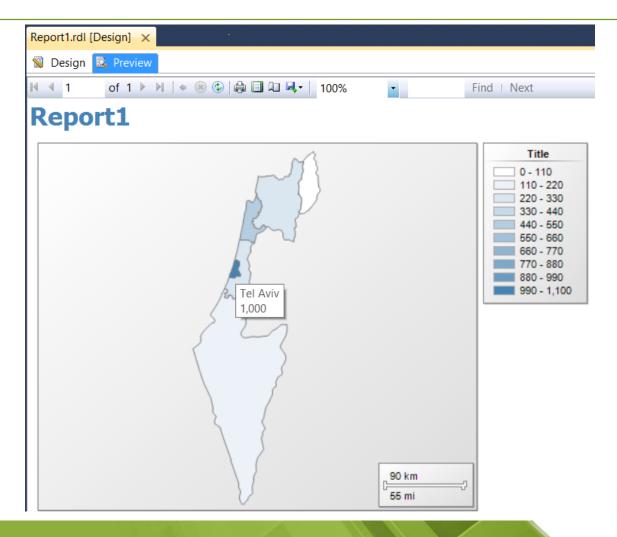


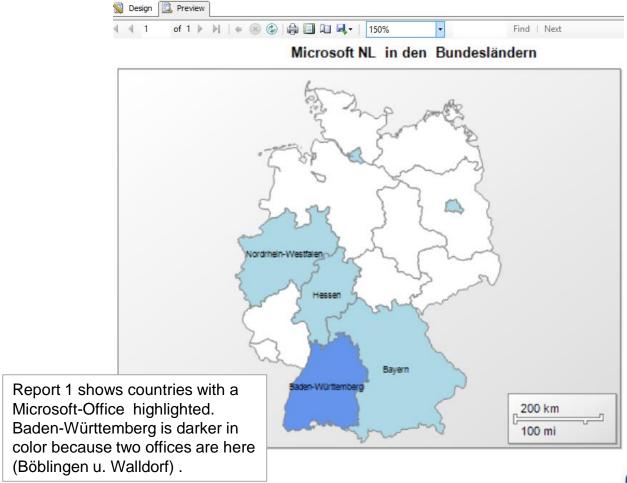
Agenda

- database
- geography basics
- geodata retrieval and preparation
- ESRI shapefiles
- report with geography data
- summary



outline & previous database


implementation



DEMO PASS

demo result

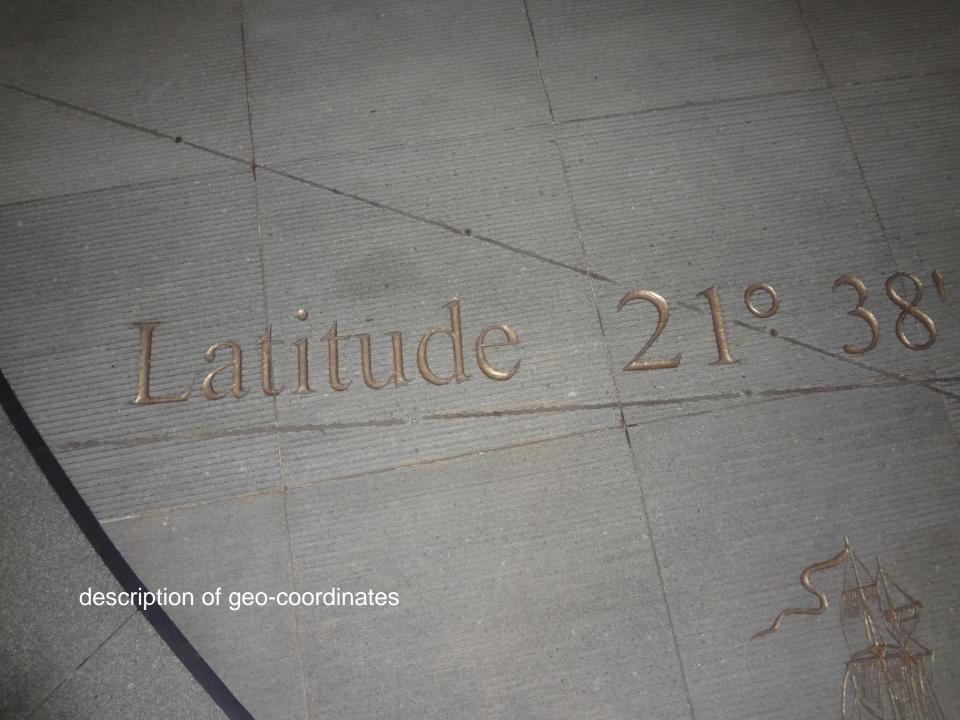
demo result

1. confusion

database

geo processing

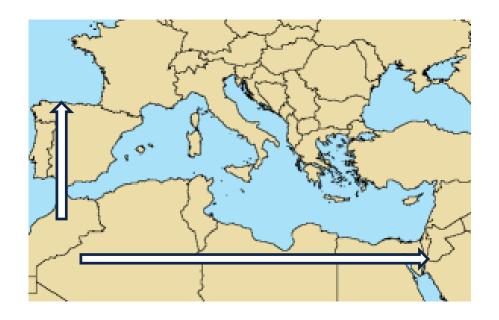
visualization

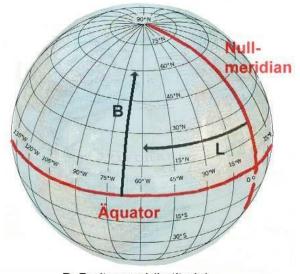

[Bundesland]

Bayern

•••

assignment to shapefile data





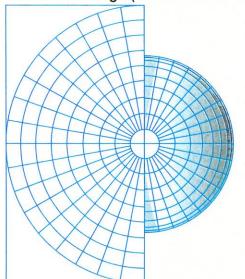
Geo - Basics

B: Breitengrad (Latitude) L: Längengrad (Longitude)

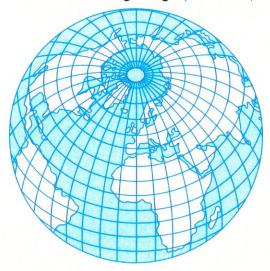
information

In the following there are some slides with the bases of maps.

These serve as bases or background information.


There are many attempts of map presentation which all deal with the same question or issue:

How can the 3-dimensional surface of a ball / globe (the Earth is almost spherical) be presented.

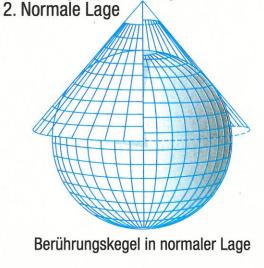

Abbildung auf eine Ebene

1.1 Normale Lage (mittabstandstreu)

Beispiel Seite 220: Nordpolargebiet mit Konstruktionsmittelpunkt Nordpol

1.2 Schiefachsige Lage (flächentreu)

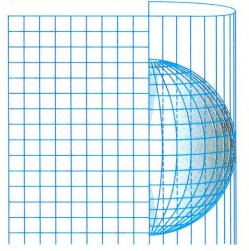
Beispiel Seite 147: Asien mit Konstruktionsmittelpunkt 40° Nord/90° Ost


1.3 Querachsige Lage (flächentreu)

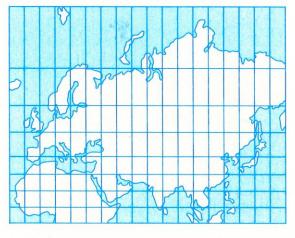
Beispiel Seite 131: Afrika mit Konstruktionsmittelpunkt Äquator/15° Ost

Abbildung auf einen Kegel

2.1 Normale Lage abstandstreuer Berührungskegel


Alle Meridiane und die Berührungsbreitenkreise sind längentreu.

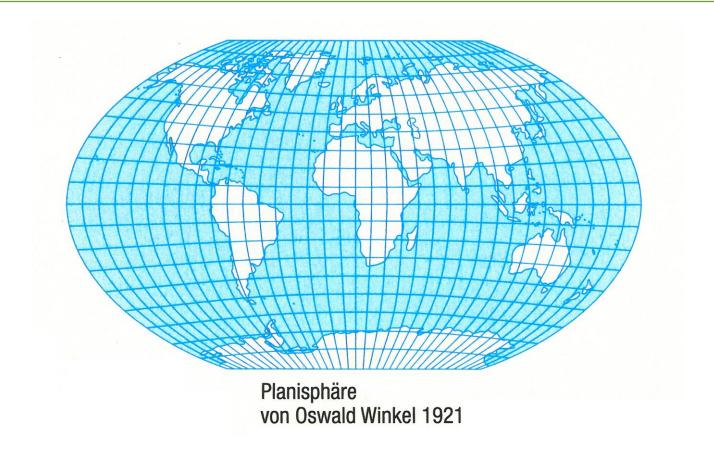
2.2 Normale Lage abstandstreuer Schnittkegel



Alle Meridiane und die beiden Schnittbreitenkreise sind längentreu. Beispiel Seite 98/99: Mitteleuropa mit Schnittbreitenkreisen 46° Nord und 52° Nord

Abbildung auf einen Zylinder 3.1 Normale Lage (Quadratische Plattkarte)

Alle Meridiane und der Berührungsbreitenkreis (Äquator) sind längentreu. 3.2 Normale Lage (Mercator-Abbildung, Gerhard Kremer, genannt Mercator, 1512–1594)



winkeltreu, Äquator ist längentreu, wachsende Breitenabstände Beispiel: Seite 248/249 3.3 Querachsige Lage (Gauß-Krüger-Meridianstreifenabbildung, entwickelt von C. F. Gauß, 1777–1855, ergänzt von J. H. L. Krüger, 1857–1923)

winkeltreu, alle Hauptmeridiane sind längentreu

Formeln

 $Sr = \frac{R \cdot \delta \cdot \pi}{180^{\circ}}$

Sr = Abstand A-B

R = Erdradius 6370 km

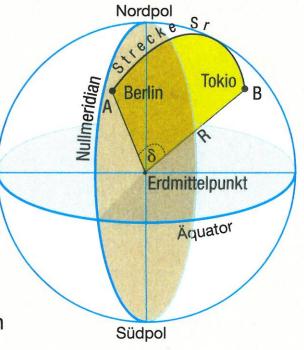
 δ = Mittelpunktswinkel

für δ gilt die Formel:

 $\cos \delta = \sin \phi_A \cdot \sin \phi_B + \cos \phi_A \cdot \cos \phi_B \cdot \cos (\lambda_A - \lambda_B)$ $(\phi_A, \phi_B = \text{geogr. Breite A und B}; \lambda_A, \lambda_B = \text{geogr. Länge A und B})$

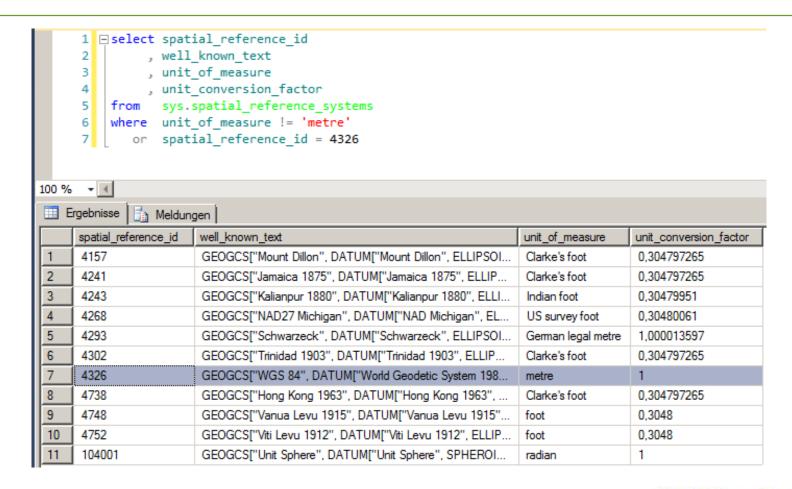
Das Einsetzen der Koordinaten in die rechte Seite der Gleichung liefert einen Wert für cos δ . Den zugehörigen Winkel δ erhält man auf dem Taschenrechner mit Hilfe der Tasten INV \cdot cos.

Beispiel


Berlin (A) φ 52° λ 13°

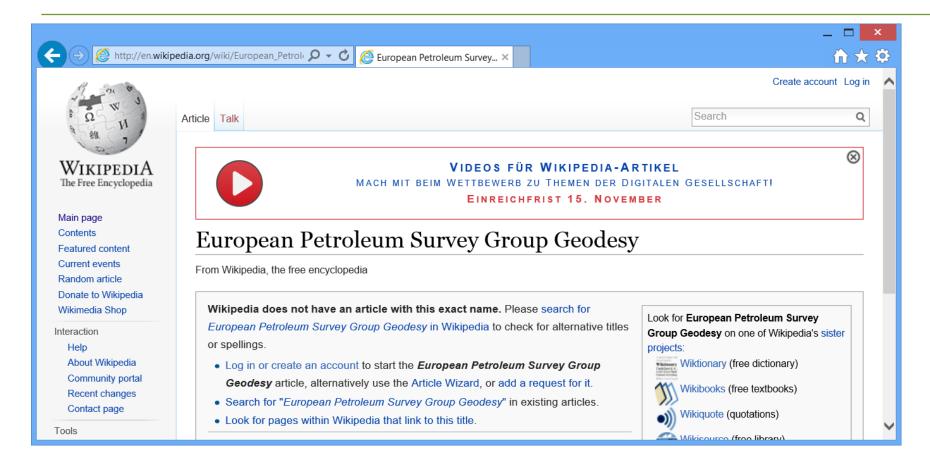
Tokio (B) φ 36° λ 140° Sr = 8960 km

Vergleiche durch Messen (Karte Seite 222/223)


Kartenstrecke Sk = 12,5 cm · 90 000 000 = 11 250 km

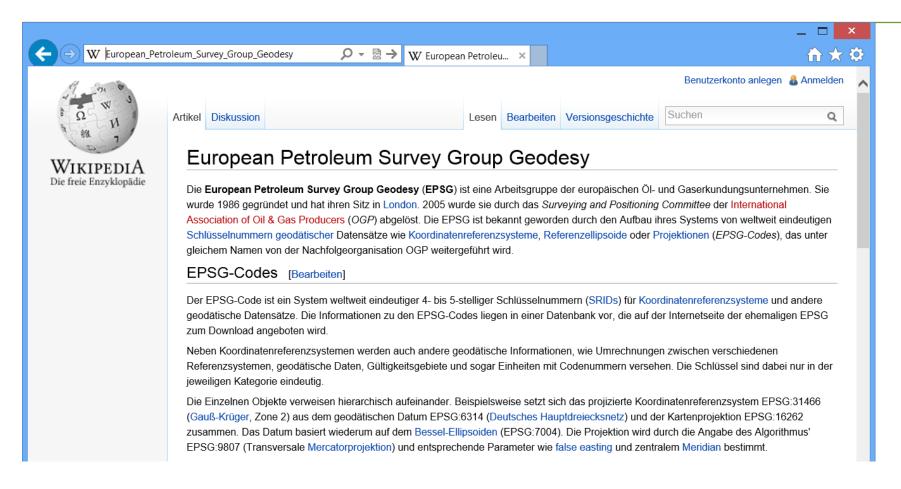
Die gemessene Strecke ist 25,5% zu lang.

available coordinate systems

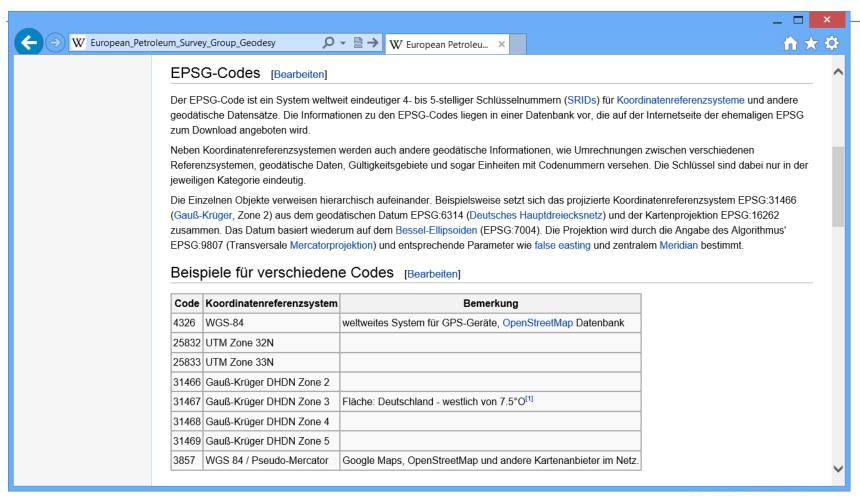


available coordinate systems (2)

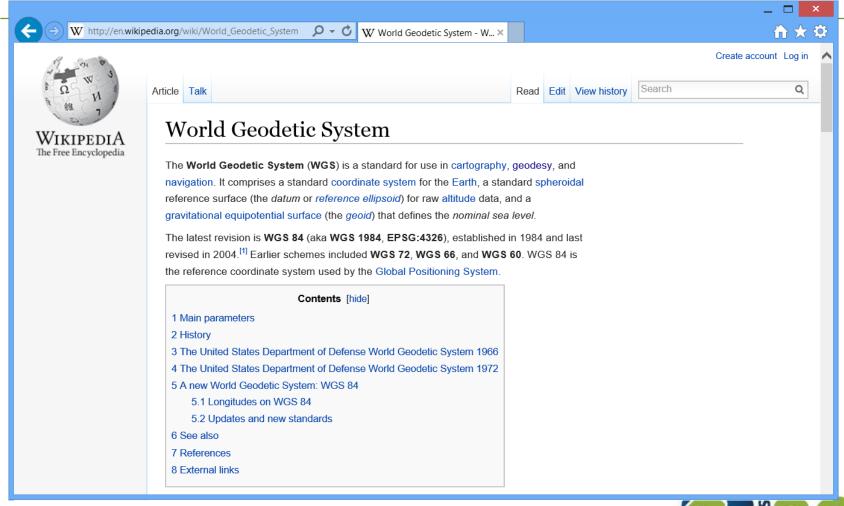
```
1 ⊟select *
       2 from
                     sys.spatial reference systems
100 %
III Results | Messages
      spatial reference id authority name
                                           authorized spatial reference id
                                                                           well known text
                                                                                                                                                                          unit of meas..
                                                                                                                                                                                          unit conversion fa..
      4301
                           EPSG
                                            4301
                                                                           GEOGCS["Tokyo", DATUM["Tokyo", ELLIPSOID["Bessel 1841", 6377397.155, 299.1528128]], PRIM...
                                                                                                                                                                          metre
 161
                                                                           GEOGCS["Trinidad 1903", DATUM["Trinidad 1903", ELLIPSOID["Clarke 1858", 6378293.64520876, ..
       4302
                           EPSG
                                            4302
                                                                                                                                                                          Clarke's foot
                                                                                                                                                                                          0.304797265
 162
                           EPSG
                                            4303
                                                                           GEOGCS["TC(1948)", DATUM["Trucial Coast 1948", ELLIPSOID["Helmert 1906", 6378200, 298.3]], P...
       4303
                                                                                                                                                                          metre
 163
       4304
                           EPSG
                                            4304
                                                                           GEOGCS["Voirol 1875", DATUM["Voirol 1875", ELLIPSOID["Clarke 1880 (IGN)", 6378249.2, 293.466...
 164
                                                                                                                                                                          metre
                                                                                                                                                                                          1
       4306
                           EPSG
                                            4306
                                                                           GEOGCS["Bern 1938", DATUM["Bern 1938", ELLIPSOID["Bessel 1841", 6377397.155, 299.1528128...
 165
                                                                                                                                                                          metre
                                                                           GEOGCS["Nord Sahara 1959", DATUM["Nord Sahara 1959", ELLIPSOID["Clarke 1880 (RGS)", 6378...
       4307
                           EPSG
                                            4307
 166
                           EPSG
                                                                           GEOGCS["RT38", DATUM["Stockholm 1938", ELLIPSOID["Bessel 1841", 6377397.155, 299.152812...
 167
       4308
                                            4308
                           EPSG
                                            4309
                                                                           GEOGCS["Yacare", DATUM["Yacare", ELLIPSOID["International 1924", 6378388, 297]], PRIMEM["Gr...
                                                                                                                                                                          metre
                                                                                                                                                                                          1
 168
 169
       4310
                           EPSG
                                            4310
                                                                           GEOGCS["Yoff", DATUM["Yoff", ELLIPSOID["Clarke 1880 (IGN)", 6378249.2, 293.466021293627]], P...
                                                                                                                                                                          metre
170
       4311
                           EPSG
                                            4311
                                                                           GEOGCS["Zanderij", DATUM["Zanderij", ELLIPSOID["International 1924", 6378388, 297]], PRIMEM["...
                                                                                                                                                                          metre
                                                                                                                                                                                          1
                           EPSG
                                            4312
 171
       4312
                                                                           GEOGCS["MGI", DATUM["Militar-Geographische Institut", ELLIPSOID["Bessel 1841", 6377397.155, 2...
                                                                                                                                                                          metre
       4313
                           EPSG
                                            4313
                                                                           GEOGCS["Belge 1972", DATUM["Reseau National Belge 1972", ELLIPSOID["International 1924", 63...
                                                                                                                                                                                          1
172
                                                                                                                                                                          metre
       4314
                           EPSG
                                            4314
                                                                           GEOGCS["DHDN", DATUM["Deutsches Hauptdreiecksnetz", ELLIPSOID["Bessel 1841", 6377397.15...
                                                                                                                                                                          metre
 173
                           EPSG
                                            4315
                                                                           GEOGCS["Conakry 1905", DATUM["Conakry 1905", ELLIPSOID["Clarke 1880 (IGN)", 6378249.2, 29...
 174
       4315
                                                                                                                                                                          metre
                                                                                                                                                                                          1
       4316
                           EPSG
                                            4316
                                                                           GEOGCS["Dealul Piscului 1933", DATUM["Dealul Piscului 1933", ELLIPSOID["International 1924", 63...
 175
                                                                                                                                                                          metre
                           EPSG
                                            4317
                                                                           GEOGCS["Dealul Piscului 1970", DATUM["Dealul Piscului 1970", ELLIPSOID["Krassowsky 1940", 63...
       4317
 176
                                                                                                                                                                          metre
       4318
                           EPSG
                                            4318
                                                                           GEOGCS["NGN", DATUM["National Geodetic Network", ELLIPSOID["WGS 84", 6378137, 298.25722...
                                                                                                                                                                          metre
 177
 178
       4319
                           EPSG
                                            4319
                                                                           GEOGCS["KUDAMS", DATUM["Kuwait Utility", ELLIPSOID["GRS 1980", 6378137, 298.257222101]], ...
                           EPSG
                                            4322
 179
                                                                           GEOGCS["WGS 72", DATUM["World Geodetic System 1972", ELLIPSOID["WGS 72", 6378135, 298....
       4324
                           FPSG
                                            4324
                                                                           GEOGCS["WGS 72BE", DATUM["WGS 72 Transit Broadcast Ephemeris", ELLIPSOID["WGS 72", 637...
 180
                                                                                                                                                                          metre
       4326
                           EPSG
                                           4326
                                                                           GEOGCS["WGS 84", DATUM["World Geodetic System 1984", ELLIPSOID["WGS 84", 6378137, 298...
 181
       4600
                           EPSG
                                            4600
                                                                           GEOGCS["Anguilla 1957", DATUM["Anguilla 1957", ELLIPSOID["Clarke 1880 (RGS)", 6378249.145, ...
                                                                                                                                                                                          1
 182
 183
       4601
                           EPSG
                                            4601
                                                                           GEOGCS["Antigua 1943", DATUM["Antigua 1943", ELLIPSOID["Clarke 1880 (RGS)", 6378249.145, 2...
       4602
                           EPSG
                                            4602
                                                                           GEOGCS["Dominica 1945", DATUM["Dominica 1945", ELLIPSOID["Clarke 1880 (RGS)", 6378249.14...
 184
       4603
                           EPSG
                                            4603
                                                                           GEOGCS["Grenada 1953", DATUM["Grenada 1953", ELLIPSOID["Clarke 1880 (RGS)", 6378249.145...
```



EPSG (European Petroleum Survey Group Geodesy)



EPSG (European Petroleum Survey Group Geodesy)



EPSG (European Petroleum Survey Group Geodesy)

recommended coordinate system

information

What you should learn and what we actually need to go into further detail about

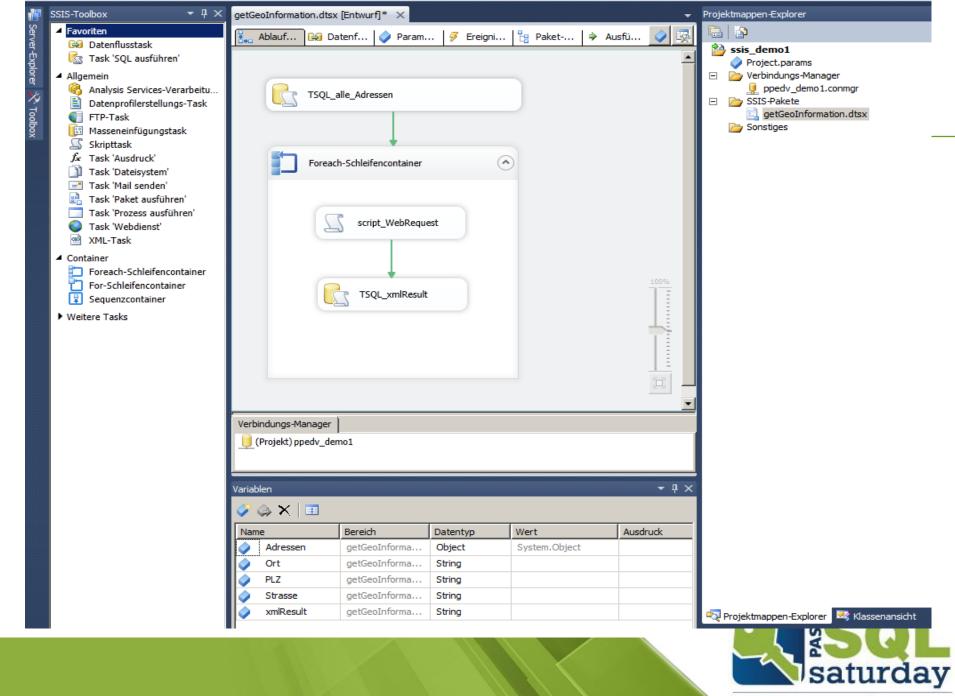
- For map presentations equal area or equidistant projections are common practice.
 - The combination of the two is not possible.
- In recent years the WGS84 has established as the recommended coordinate system.
- Therefore all the further calculations contain the EPSG code 4326 as parameter.

geo processing

geo processing

- bing / google
- open geo DB
- azure marketplace
- phone app

geo processing


geo processing

- WGS84
 - SQL-Server: spatial_reference_id = 4326
- Query of reference datas

saturday


```
g
```

```
ScriptMain.vb* X
🔧 ScriptMain
                                                                               Main 🕯

⊕#Region "Imports"

    Imports System
                                    ''-- add
    Imports System.IO
    Imports System.IO.Stream
    Imports System.IO.StreamReader ''-- add
    Imports System.Data
    Imports System.Math
    Imports Microsoft.SqlServer.Dts.Runtime
    #End Region

☐<Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute()> _

    <System.CLSCompliantAttribute(False)>
    Partial Public Class ScriptMain
        Inherits Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase
        Public Sub Main()
            Dts.Variables("xmlResult").Value = GetGoogleGeoCode(Dts.Variables("Strasse").Value.ToString, Dts.Variables("PLZ").Value.ToString, "xml")
            Dts.TaskResult = ScriptResults.Success
        End Sub
   Enum ScriptResults
            Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success
            Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure
        End Enum
    #End Region
        Public Function GetGoogleGeoCode(ByVal street As String, ByVal zipCity As String, ByVal resultType As String) As String
            Dim IoStream As System.IO.Stream
            Dim StrRead As System.IO.StreamReader
            Dim urlString As String
            urlString = "http://maps.google.com/maps/geo?q=" + street + "," + zipCity + "&output=" + resultType + "&sensor=false&key=abcdefg"
                Dim Request As System.Net.WebRequest = System.Net.WebRequest.Create(urlString)
                IoStream = Request.GetResponse.GetResponseStream
                StrRead = New System.IO.StreamReader(IoStream)
                Return StrRead.ReadToEnd
            Catch ex As Exception ' bei beliebigem Fehler
                Return vbNullString
            Finally
                StrRead.Close()
                IoStream.Close()
            End Try
        End Function
    End Class
```



```
⊟<kml xmlns="http://earth.google.com/kml/2.0">
       <Response>
         <name>Konrad-Zuse-Straße 1,85716</name>
 3
 4
         <Status>
 5
           <code>200</code>
           <request>geocode</request>
         </Status>
 8
         <Placemark id="p1">
           <address>Konrad-Zuse-Straße 1, 85716 Unterschleißheim, Germany</address>
 9
10
           <AddressDetails xmlns="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0" Accuracy="8">
11
             <Country>
12
               <CountryNameCode>DE</CountryNameCode>
               <CountryName>Deutschland</CountryName>
13
14
               <AdministrativeArea>
15
                 <AdministrativeAreaName>Bayern</AdministrativeAreaName>
16
                 <SubAdministrativeArea>
                   <SubAdministrativeAreaName>Oberbayern</SubAdministrativeAreaName>
17
18
                   <Locality>
                     <LocalityName>Unterschleißheim</LocalityName>
19
                     <DependentLocality>
20
21
                        <DependentLocalityName>Lohhof</DependentLocalityName>
22
                        <Thoroughfare>
                         <ThoroughfareName>Konrad-Zuse-Straße 1</ThoroughfareName>
23
24
                       </Thoroughfare>
25
                       <PostalCode>
                          <PostalCodeNumber>85716</PostalCodeNumber>
26
27
                       </PostalCode>
28
                     </DependentLocality>
29
                   </Locality>
30
                 </SubAdministrativeArea>
               </AdministrativeArea>
31
32
             </Country>
33
           </AddressDetails>
34
           <ExtendedData>
             <LatLonBox north="48.2917990" south="48.2891010" east="11.5829690" west="11.5802710" />
35
36
           </ExtendedData>
37
           <Point>
38
             <coordinates>11.5816200,48.2904500,0</coordinates>
39
           </Point>
         </Placemark>
40
41
       </Response>
     </kml>
42
```


Hauptseite Themenportale Von A bis Z Zufälliger Artikel Keyhole Markup Language (KML) ist eine Auszeichnungssprache zur Beschreibung von Geodaten für die Client-Komponenten der Programme Google Earth und Google Maps. KML befolgt die XML-Syntax, liegt in der Version 2.2 vor und ist ein Standard des Open Geospatial Consortium.

Keyhole Markup Language

KML

Dateiendung: .kml, .kmz

MIME-Type: application/vnd.google-

earth.kml+xml,

application/vnd.google-

earth.kmz

Entwickelt von: Google Inc.

Art: Auszeichnungssprache

Erweitert von: XML Standard(s): KML &

Eigenschaften [Bearbeiten]

Geometrie-Elemente [Bearbeiten]

KML-Dokumente können Geodaten sowohl in Vektor- wie auch in Rasterform beinhalten. Vektorobjekte wie Punkte, Linien, lineare Ringe, Polygone oder COLLADA-Modelle werden als *Placemark*-Elemente und Luft- und Satellitenbilder als *GroundOverlay*-Elemente modelliert.

Nebst der Geometrie können *Placemark*-Elemente Name, Beschreibung, vordefinierten Stil, Betrachtungswinkel und -höhe, einen Zeitstempel, aber auch beliebige untypisierte oder typisierte Daten, z.B. aus einem Geoinformationssystem, umfassen. Dasselbe gilt auch für ein *GroundOverlay*-Element, wobei anstelle der Geometrie ein Koordinatenausschnitt zur Georeferenzierung der Rasterdaten definiert werden muss.

Geodätisches Referenzsystem [Bearbeiten]

Als geodätisches Referenzsystem wird in KML-Dokumenten ausschließlich das World Geodetic System 1984 verwendet, d.h. sämtliche Koordinaten werden mit geografischer Länge und Breite sowie, falls vorhanden, Höhe über Meer angegeben. Die Höhe bezieht sich dabei auf das WGS84 EGM96 Geoid^[1].

OpenGeoDB

OpenGeoDB

100.0/

100 % -								
	#loc_id	plz	lon	lat	Ort			
1	5078	01067	13.7210676148814	51.0600336463379	Dresden			
2	5079	01069	13.7389066401609	51.039558876083	Dresden			
3	5080	01097	13.7439674110642	51.0667452412037	Dresden			
4	5081	01099	13.8289798683304	51.0926193047084	Dresden			
5	5082	01109	13.7619645364861	51.1201009324663	Dresden			
6	5083	01127	13.733347378178	51.0796304130158	Dresden			
7	5084	01129	13.7274104697459	51.0967944759693	Dresden			

Deutsch English

ZAHLEN & FAKTEN

PUBLIKATIONEN

PRESSE & SERVICE

METHODEN

ÜBER UNS

Startseite > Zahlen & Fakten > Länder & Regionen > Regionales > Gemeindeverzeichnis > Gemeindeverzeichnis - Memoindeverzeichnis - Me

Indikatoren

Gesamtwirtschaft & Umwelt

Wirtschaftsbereiche

Gesellschaft & Staat

Länder & Regionen

- → Regionales
 - → Regionaldatenbank
 - → Regionalatlas
 - → Gemeindeverzeichnis
- → Europa
- → Internationales

Gemeindeverzeichnis-Informationssystem (GV-ISys)

Administrative Gebietsgliederungen

Ab dem 31.05.2013 ist in GV-ISys die neue Datengrundlage für die Berechnung des Bevölkerungsstandes der Zensus 2011.

- Gemeinden in Deutschland nach Bevölkerung am 31.12.2011 auf Grundlage des Zensus 2011 und früherer Zählungen im Excel-Format.
- Großstädte (mit mindestens 100 000 Einwohnerinnen und Einwohnern) in Deutschland am 31.12.2011 auf Grundlage des Zensus 2011 und früherer Zählungen im PDF- und Excel-Format.

Erscheinungsweise vierteljährlich (Quartalsausgabe)

Die Bevölkerungsangaben basieren bis zum Stichtag 31.03.2013 auf Grundlage früherer Zählungen und ab dem Stichtag 30.06.2013 auf Grundlage des Zensus 2011.

- Bundestagswahlkreise 2013 mit ihren zugeordneten Gemeinden mit PLZ im Excel-Format zum 30.09.2013 (3. Quartal) mit fortgeschriebener Fläche und Bevölkerung (aufgrund der Gebietsänderungen) auf der Basis des 31.12.2012.
- Alle politisch selbständigen Gemeinden Deutschlands aus dem Gemeindeverzeichnis im Excel-Format zum 30.09.2013 (3. Quartal) mit fortgeschriebener Fläche und Bevölkerung (aufgrund der Gebietsänderungen) auf der Basis des 31.12.2012. Die älteren Quartalsausgaben finden Sie im Archiv.
- Das aktuelle GV100AD zum 30.09.2013 (3. Quartal) im ASCII-Format. Es enthält alle administrativen Gebietseinheiten (Bundesländer, Regierungsbezirke, Regionen, Kreise, Gemeindeverbände und Gemeinden) mit fortgeschriebener Fläche und Bevölkerung (aufgrund der Gebietsänderungen) auf der Basis des 31.12.2012 und Daten zu Postleitzahlen, Finanzamts-, Gerichts- und Arbeitsamtsbezirken, sowie zu Bundestagswahlkreisen. Die älteren Quartalsausgaben, sowie die letzte monatliche Bereitstellungsdatei finden Sie im Archiv.

AUF EINEN BLICK

Bevölkerung im Dezember 2012 auf Grundlage des Zensus 2011

Bundesland	Anzahl
Baden-Württemberg	10 569 111
Bayern	12 519 571
Berlin	3 375 222
Brandenburg	2 449 511
Bremen	654 774
Hamburg	1 734 272
Hessen	6 016 481
Mecklenburg- Vorpommern	1 600 327
Niedersachsen	7 778 995
Nordrhein-Westfalen	17 554 329
Rheinland-Pfalz	3 990 278
Saarland	994 287
Sachsen	4 050 204
Sachsen-Anhalt	2 259 393
Schleswig-Holstein	2 806 531
Thüringen	2 170 460
Deutschland	80 523 746

	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R
1								Gemein	iden in Deu	itschland	nach Fläch	e, Bevölke	erung	und P	ostleitzahl am 3	0.09.2013 (3. 0	Quartal)	
2												•				•		
3	Satz	Text-	Regionalschlüssel (RS) Gemeinder Land RB Kreis VB Gem		Gemeindename	Fläche km²			Post-	Geografische Mittelpunktkoordinater		Reisegebiete						
4	art	zeichen	Land	IKB	Kreis	S VB	Gem		31.12.2012	insgesamt	männlich		je km²	zahl	Längengrad	Breitengrad		
5				Gel	bietss	tand a	m 30.	.09.2013 (2. Quartal)	(Jahr)		am 31.12.201 Frundlage des		1	Zaili	Zuordnungsstand	d am 31.12.2011	Schlüssel	Bezeichnung
14394	20		14	6				früher: Direktionsbezirk	Dresden									
14395	40	41	14	6	12			Dresden, Stadt										
14396	50	50	14	6	12	0000		Dresden, Stadt										
14397	60	61	14	6	12	0000	000	Dresden, Stadt	328,31	525 105	258 626	266 479	1599	01067	13,736883	51,051696	C00	Stadt Dresden
14398		44	14	6	25			Bautzen										
14399	50	50	14	6	25	0010		Arnsdorf										
14400	60	64	14	6	25	0010	010	Arnsdorf	35,80	4 764	2 482	2 282	133	01477	13,992797	51,097714	C03	Oberlausitz/Niederschlesien
14401	50	50	14	6	25	0020		Bautzen, Stadt										
14402	60	63	14	6	25	0020	020	Bautzen, Stadt	66,62	39 743	19 139	20 604	597	02625	14,427688	51,180868	C03	Oberlausitz/Niederschlesien
14403	50	50	14	6	25	0030		Bernsdorf, Stadt							-			
14404	60	63	14	6	25	0030	030	Bernsdorf, Stadt	59,66	6 689	3 297	3 392	112	02994	14,069499	51,376325	C03	Oberlausitz/Niederschlesien
14405	50	50	14	6	25	0060		Burkau										
14406	60	64	14	6	25	0060	060	Burkau	31,83	2 731	1 386	1 345	86	01906	14,17238	51,175556	C03	Oberlausitz/Niederschlesien
14407	50	50	14	6	25	0090		Cunewalde										
14408	60	64	14	6	25	0090	090	Cunewalde	26,62	4 943	2 436	2 507	186	02733	14,518264	51,100693	C03	Oberlausitz/Niederschlesien
14409	50	50	14	6	25	0100		Demitz-Thumitz										
14410	60	64	14	6	25	0100	100	Demitz-Thumitz	21,07	2 819	1 414	1 405	134	01877	14,247615	51,144951	C03	Oberlausitz/Niederschlesien
14411	50	50	14	6	25	0110		Doberschau-Gaußig										
14412	60	64	14	6	25	0110	110	Doberschau-Gaußig	40,48	4 277	2 188	2 089	106	02692	14,344152	51,141525	C03	Oberlausitz/Niederschlesien
14413	50	50	14	6	25	0120		Elsterheide										
14414	60	64	14	6	25	0120	120	Elsterheide	126,82	3 671	1 854	1 817	29	02979	14,228096	51,466288	C03	Oberlausitz/Niederschlesien
14415	50	50	14	6	25	0130		Elstra, Stadt										
14416	60	63	14	6	25	0130	130	Elstra, Stadt	32,64	2 909	1 465	1 444	89	01920	14,133453	51,222128	C03	Oberlausitz/Niederschlesien
14417	50	50	14	6	25	0150		Göda										
14418	60	64	14	6	25	0150	150	Göda	43,26	3 162	1 589	1 573	73	02633	14,319851	51,179522	C03	Oberlausitz/Niederschlesien
14419	50	50	14	6	25	0160		Großdubrau										
14420	60	64	14	6	25	0160	160	Großdubrau	54,21	4 329	2 179	2 150	80	02694	14,462673	51,255606	C03	Oberlausitz/Niederschlesien
14421	50	50	14	6	25	0220		Haselbachtal										
14422	60	64	14	6	25	0220	220	Haselbachtal	37,47	4 113	2 095	2 018	110	01920	14,022852	51,238229	C03	Oberlausitz/Niederschlesien
				-														

START > DATEN > US GEOSPATIAL BOUNDARY SEARCH

US GeoSpatial Boundary Search

Daten

Veröffentlicht von: GeoLuminate LLC

Kategorien: Verwaltung/Behörden, Demografie, Entwicklerdienste

Datum hinzugefügt: 10.07.2013 Support für dieses Angebot erhalten

It takes hundreds of hours to find and massage shape files that describe country, state, county, zip borders into your database. We provide highly accurate and available geometry data on borders converted from shape files in SQL for ease of use. Our data has also been streamlined for map view, so you can display accurate border shapes with speed. We constantly update border information posted by government and postal office so that you can use your valuable time somewhere else. You can simply grab the data you need and use them with confidence

Beispielbilder Details Angebotsbedingungen des Herausgebers

10.000 Transaktionen/Monat Testversiondetails

pro Monat

KOSTENLOSER
TEST

39,75€

100.000 Transaktionen/Monat Testversiondetails

79,50 €
pro Monat

KOSTENLOSER
TEST

Uneingeschränkt Transaktionen/Monat

Testversiondetails

pro Monat

KOSTENLOSER
TEST

159,01€

How to get the right geo spatial data from our database

how to query useful geo spatial data from our database

RESSOURCEN

Microsoft PowerPivot für Excel 2010 ▶

Hier finden Sie weitere Informationen zum Verwenden von Microsoft PowerPivot für Excel 2010 mit diesen und anderen DataMarket-Daten, um beeindruckende BI-Self-Service-Lösungen zu erstellen.

Weitere Informationen zur Verwendung dieser
Daten in Visual Studio (nur englischsprachig) ►
Hier finden Sie weitere Informationen zur nahtlosen
Nutzung von DataMarket-Daten in Visual Studio

mit stark typisiertem Datenzugriff sowie

Stamm-URL des Diensts

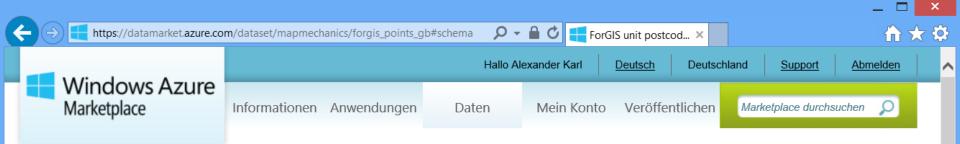
StateDetail

Eingabeparameter:

Name	Тур
ID	Int32
STATE_NAME	String

Ergebnisse:

Name	Тур
ID	Int32
STATE_NAME	String
STATE_POPULATION	Int32
POPULATION_PERCENT	Decimal
SHORT_NAME	String
BOUNDARY	String


ZipDetail

Eingabeparameter:

Name	Тур
ID	Int32
ZIP_CODE	Int32

Ergebnisse:

Name	Тур
ID	Int32
STATE_NAME	String
CITY_NAME	String
ZIP_CODE	Int32
ZIP_LATITUDE	Decimal
ZIP_LONGITUDE	Decimal
COUNTY_ID	Int32
BOUNDARY	String
COUNTY_NAME	String

START > DATEN > FORGIS UNIT POSTCODES FOR GB

ForGIS unit postcodes for GB

Daten

Veröffentlicht von: MapMechanics

Kategorien: Interessensschwerpunkte, Referenz, Immobilienwesen, Kommunikation

Datum hinzugefügt: 21.03.2013

Support für dieses Angebot erhalten

Geocoding file, with a target accuracy to within 1m of the address closest to the centre of the postcode. The dataset of choice when geocoding points for use with street level data or within small areas of interest such as 5 minute catchments. The x and y co-ordinates are provided in British National Grid and Lat/Long for Great Britain. Your own geocoded data will lie much closer to the correct street than with other files which are derived from the less accurate Postzon files. Also includes historic postcodes from every release of Code-Point since 2001. In addition MapMechanics has enhanced this product so that it accepts a variety of postcode formats, e.g. TW8 8JA or TW 8 8JA

Like < 1

Beispielbilder Details Angebotsbedingungen des Herausgebers

10
Transaktionen/Monat

O,00 €
pro Monat

REGISTRIEREN

Uneingeschränkt
Transaktionen/Monat

Transaktionen/Monat

ForGIS Postcode Points Documentation
Description of the data, fields etc

RESSOURCEN

Microsoft PowerPivot für Excel 2010 ▶

Hier finden Sie weitere Informationen zum Verwenden von Microsoft PowerPivot für Excel 2010 mit diesen und anderen DataMarket-Daten, um beeindruckende BI-Self-Service-Lösungen zu erstellen.

Weitere Informationen zur Verwendung dieser Daten in Visual Studio (nur englischsprachig) ► Hier finden Sie weitere Informationen zur nahtlosen

Nutzung von DataMarket-Daten in Visual Studio mit stark typisiertem Datenzugriff sowie vollständiger IntelliSense-Unterstützung.



Beispielbilder Details Angebotsbedingungen des Herausgebers

Stamm-URL des Diensts

https://api.datamarket.azure.com/mapmechanics/ForGIS_points_GB/v1/

Dieser Dienst unterstützt feste und flexible Abfragen. Einige Abfragen enthalten ggf. erforderliche Eingabeparameter. (Informationen zu Abfragetypen)

ForGIS_Postcodes_GB_Q12013

Eingabeparameter:

Name	Тур
Postcode	String
StructuredPostcode	String
Current	String

Ergebnisse:

Name	Тур
Postcode	String
StructuredPostcode	String
Current	String
X	String
Υ	String
Latitude	String
Longitude	String

START	DURCHSUCHEN	конто	VERÖFFENTLICHEN	ENTWICKELN	SUPPORT
Whitepaper	Alle	Kontoinformationen	Veröffentlichungsportal	Anleitung	Forum/Blog
Fallstudien	Daten	Meine Anwendungen	Onlineressourcen	Codebeispiele	Support zu
Videos	Anwendungen	Meine Daten	Videos	Ihre Anwendung registrieren	Abrechnungsfragen
Dokumentation		Kontoschlüssel	Data Publishing Kit	Verwenden der Microsoft	Technischer Support
			Application Publishing Vit	Translator-API	IP-Verletzungsformular

START > DATEN > GEODATA SERVICE

GeoData Service

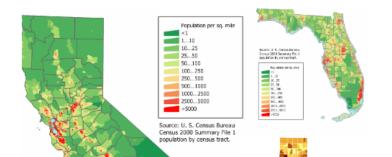
Daten

https://datamarket.azure.com/dataset/geodata/geodataservice#images

Veröffentlicht von: GeoDataService

Kategorien: Immobilienwesen, Demografie, Verwaltung/Behörden

31.08.2011 Datum hinzugefügt: Support für dieses Angebot erhalten


- Census 2010
- Understand your visitors better by geographical location
- Customize the Web Experience direct the user to a specific page with advertisements or information specific to each visitor
- Redirects web pages based on geographical region for load balancing
- Saves advertisement costs by Geo targeting for increased sales and clickthrough
- Verify 5-digit ZIP with city and state
- Reduce keystrokes and increase data entry accuracy
- Provide customers with closest dealer information

Beispielbilder

Details Angebotsbedingungen des Herausgebers

1.000 Transaktionen/Monat Testversiondetails

pro Monat KOSTENLOSER TEST

14,20€

3.000 Transaktionen/Monat

29,14€ pro Monat

KAUFEN

9.000

Transaktionen/Monat

59.04€ pro Monat

KAUFEN

20.000 Transaktionen/Monat

111,34€ pro Monat

KAUFEN

Uneingeschränkt Transaktionen/Monat

223,44 €

pro Monat

KAUFEN

🗐 Demographics Web Service (Input and

This tutorial explains to the consumer which parameters are optional and required. The output data is explained in detail.

RESSOURCEN

Microsoft PowerPivot für Excel 2010 ▶

Hier finden Sie weitere Informationen zum Verwenden von Microsoft PowerPivot für Excel 2010 mit diesen und anderen DataMarket-Daten, um beeindruckende BI-Self-Service-Lösungen zu erstellen.

Tableau Software ▶

Hier finden Sie weitere Informationen dazu, wie dieses und andere DataMarket-Datasets in Tableau visualisiert werden können. Die schnelle

Geocode - High granularity geocode for any address worldwide

Daten

Veröffentlicht von: Logate

Kategorien: **Data Quality Services**

Datum hinzugefügt: 03.06.2011 Support für dieses Angebot erhalten

Geocoding is the process of translating a location to specific coordinates on a map based on other geographic data, such as street addresses, or zip codes (postal codes). With geographic coordinates, the location can be mapped and entered into Geographic Information Systems (GIS), Location Based Services (LBS) or the coordinates can be embedded into media such as digital photographs via geotagging. The Geocode SDK enables a latitude-longitude coordinate to be added to any world address and enjoys superior market leading breadth and depth of data, with worldwide coverage to city or postal code centroid, and delivery point/rooftop level coverage for over 120 countries. -Validates data against the extensive Loqate Global Knowledge Repository of worldwide reference data - Improved geocoding through pre-cleansing of input

Like < 0


Beispielbilder

data

Details

Angebotsbedingungen des Herausgebers

INPUT DATA 300 Berry #1210 SF CA **OUTPUT DATA** Latitude 37.775837 Longitude -122.39557

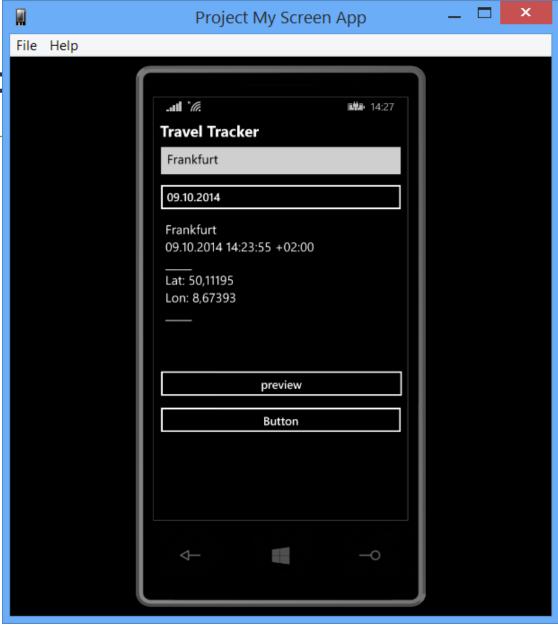
Solution Overview

An overview of the Logate Geocode service.

Documentation

Documentation for the Logate Geocode service.

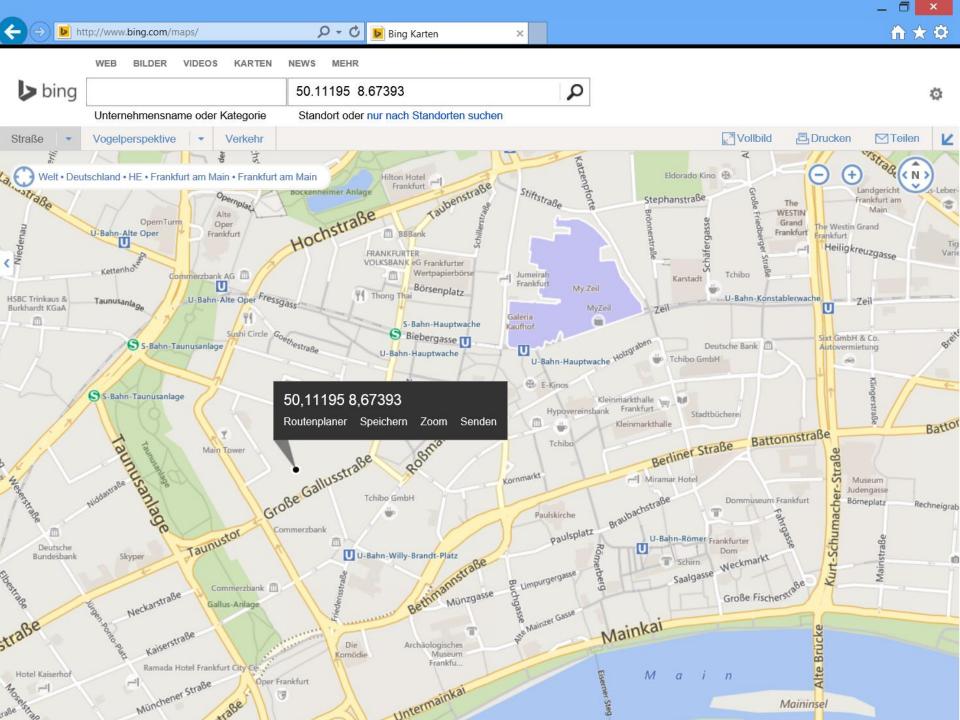
RESSOURCEN

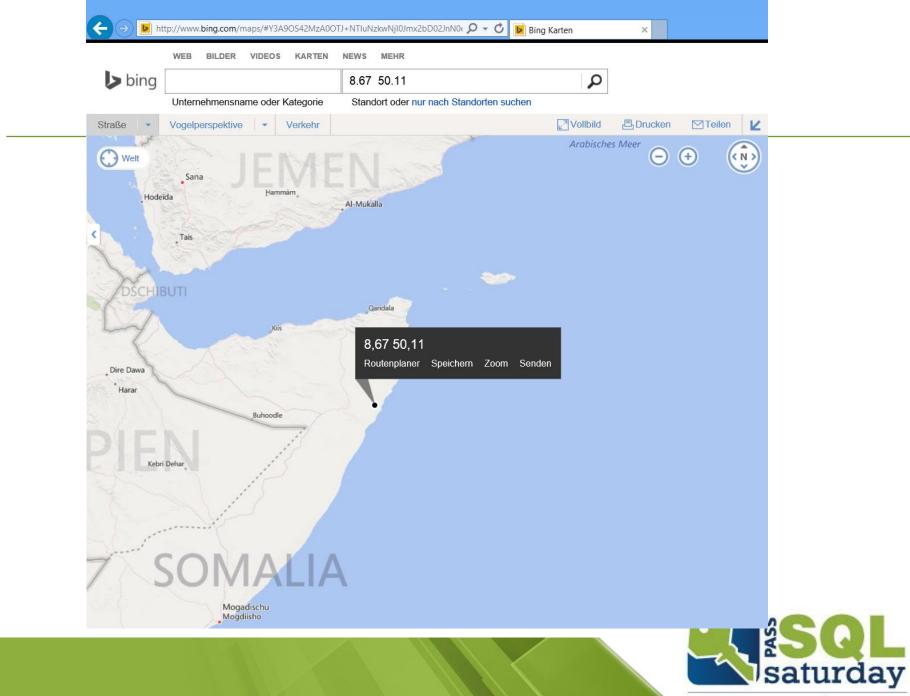

Microsoft SQL Server Data Quality Services ▶

Sie können diesen Dienst mit Microsoft SQL Server Data Quality Services zum Bereinigen und Erweitern von Daten aus Tabellen in Ihrer Datenbank oder aus einer Microsoft Excel-Arbeitsmappe verwenden.

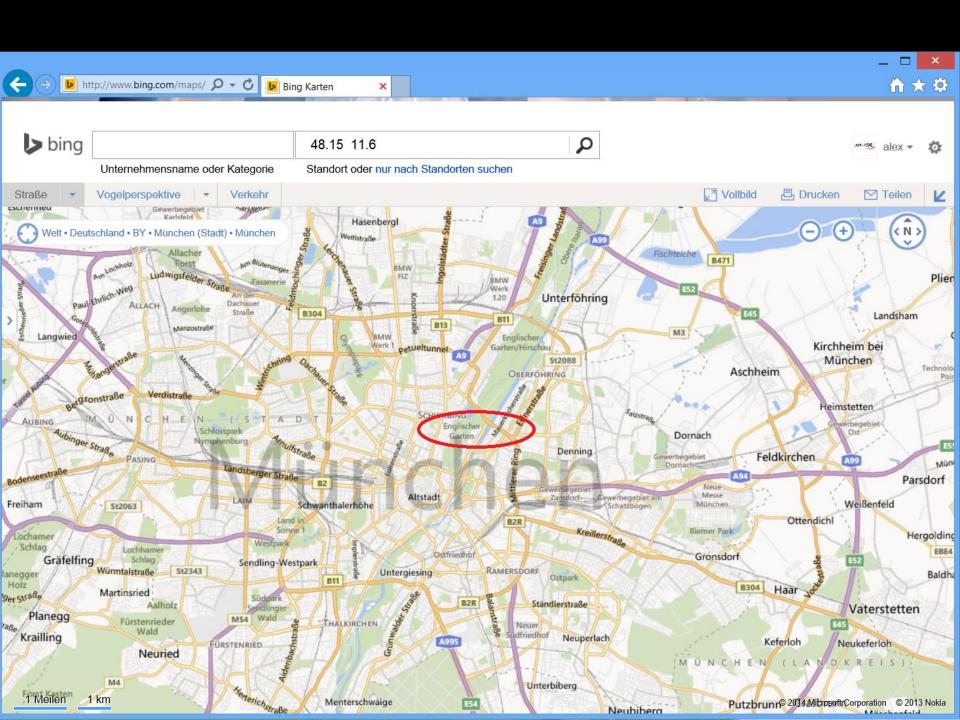
Integrieren Ihrer Anwendung in einen Dienst, der die Data Quality Services-API implementiert. >

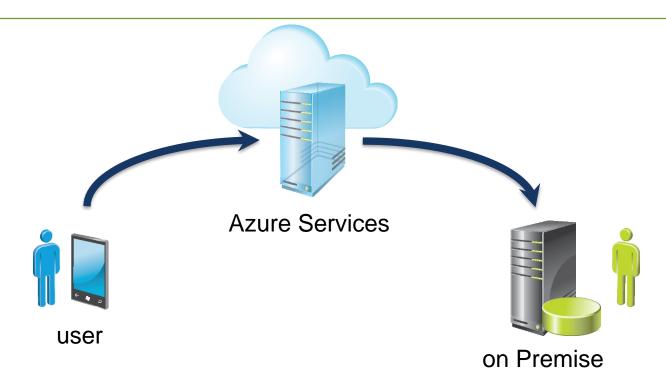
Integrieren Ihrer Anwendung in einen Dienst, der die Data Quality Services-API implementiert.





>> SQL geography


```
-- coordinates of Frankfurt/Germany
      2 ☐ declare @g FRA geography;
                  @g FRA = geography::STGeomFromText(' POINT(8.67393 50.11195) ', 4326);
         set
      4
      5
         select @g FRA, @g FRA.ToString();
      6
            http://msdn.microsoft.com/en-us/library/bb933811.aspx
            http://msdn.microsoft.com/en-us/library/bb933988.aspx
100 % - <
Results Spatial results Messages
     (No column name)
                                                    (No column name)
     0xE6100000010CC364AA60540E494029965B5A0D592140
                                                    POINT (8.67393 50.11195)
1
```

>> SQL geography

WinPhone app + backend

WinPhone app

```
public async void btnPreview_Click(object sender, RoutedEventArgs e)
   var Ziel = txtBoxDestination.Text.ToString();
   var Datum = datePicker01.Date.ToString();
   Geolocator geolocator = new Geolocator();
    geolocator.DesiredAccuracyInMeters = 50;
   Geoposition geopostion = await geolocator.GetGeopositionAsync();
   var Lat = geopostion.Coordinate.Latitude.ToString("0.00000");
    var Lon = geopostion.Coordinate.Longitude.ToString("0.00000");
   txtLat = Lat.ToString();
   txtLon = Lon.ToString();
   txtBoxPreview.Text = txtBoxDestination.Text.ToString()
                       + "\n"
                       + Datum.ToString()
                       + "\n "
                       + "\nLat: " + Lat.ToString()
                       + "\nLon: " + Lon.ToString()
                       + "\n ";
 }
```

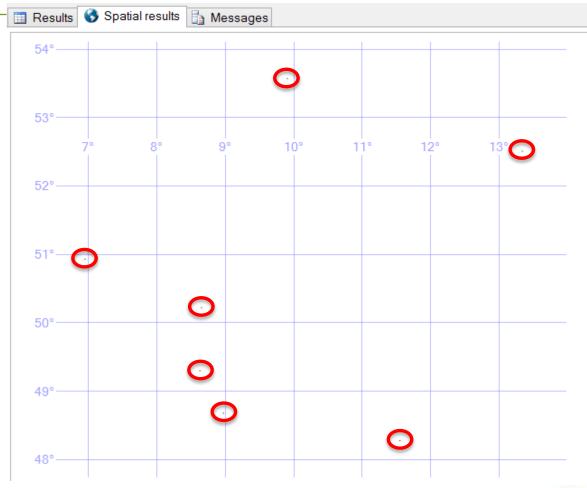
WinPhone app

```
private async void Button_Click(object sender, RoutedEventArgs e)
    InfoTextBlock.Text = " ... ";
    var Datum = datePicker01.Date.ToString();
    HttpResponseMessage response = new HttpResponseMessage();
    string resourceUri = "http:// <domain> / folder /travelLog.php"
                       + "?destination="
                       + txtBoxDestination.Text.ToString()
                       + "&localdt=2014"
                       + Datum.ToString()
                       + "&lat="
                       + txtLat.ToString()
                       + "&lon="
                       + txtLon.ToString();
    string responseTxt = "";
    try
        response = await httpClient.GetAsync(resourceUri);
        response.EnsureSuccessStatusCode();
        responseTxt = await response.Content.ReadAsStringAsync();
    catch (Exception ex)
        responseTxt = "Error = " + ex.HResult.ToString("X") + " Message: " + ex.Message;
    InfoTextBlock.Text = responseTxt.ToString();
```

#481 ISRAEL 2016

WinPhone app backend

```
-<?phpCRUE
     CRILF
     $myFile = "log/travellog.txt" ; CRUS
     $fh = fopen($myFile, 'a') or die("can't open file"); CRIM
     $stringData = "<travel><remoteaddr>" . $ SERVER['REMOTE ADDR'] . "</remoteaddr>@@@@
5
                       <datetime>" . date("Y-m-dTH:i:s") . "</datetime>@R@G
 6
                          <destination>" . $ REQUEST["destination"] . "</destination>@@@@
8
                          <localdt>" . $ REQUEST["localdt"] . "</localdt>@R@G
                          <lat>" . $ REQUEST["lat"] . "</lat>@R@@
9
10
                           <lon>" . $ REQUEST["lon"] . "</lon>@R@G
11
                     </travel>\r\n" ; CRUS
     fwrite ($fh, $stringData); CRUS
12
     CRILE
13
     fclose ($fh) ; CRUS
14
     CRILF
15
16
```

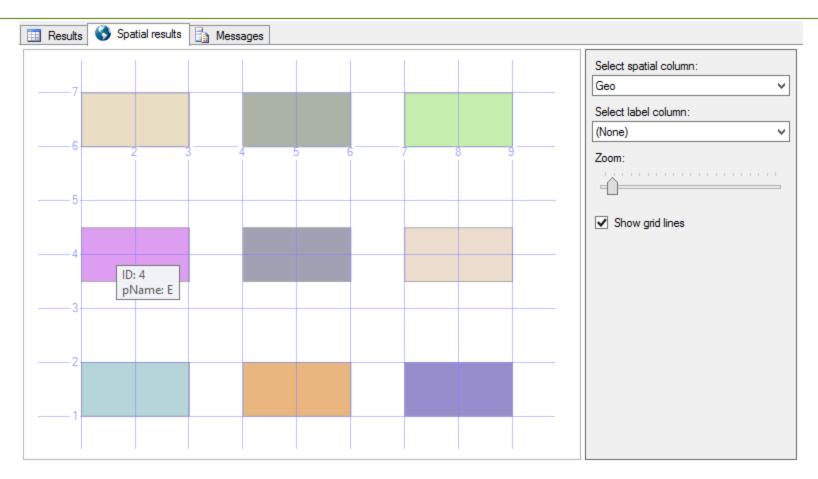

WinPhone app backend

```
∃<travels>
      <travel>
         <remoteaddr>2003:66:8e58:2501:a830:632f:ac9e:c3f4</remoteaddr>
4
         <datetime>2014-10-05CEST21:33:34</datetime>
         <destination>Mainz, Gutenbergplatz</destination>
         <localdt>05.10.2014 21:32:31 02:00</localdt>
6
         <lat>50,000</lat>
8
         <lon>8,272</lon>
      </travel>
 9
10
      <travel>
11
         <remoteaddr>80.187.109.103</remoteaddr>
        <datetime>2014-10-09CEST09:41:23</datetime>
12
13
         <destination>Frankfurt, Goetheplatz</destination>
14
         <localdt>09.10.2014 09:38:45 02:00</localdt>
15
         <lat>50,11182</lat>
         <lon>8,67411</lon>
16
      </travel>
17
    </travels>
18
```



```
4
           -- // Report2 msft-Niederlassungen
      5
         □Select A.Firma
      6
                 , A.Niederlassung
      7
                 , A.Strasse
                  A.PLZ
      8
                   A.Ort
      9
                   G.lon
                               -- float / Laenge
     10
                   G.lat
                               -- float / Breite
     11
                 , geography::STGeomFromText(
     12
                        'POINT(' + CAST([lon] AS VARCHAR(20)) +
     13
     14
                                 + CAST([lat] AS VARCHAR(20))
                                  + ')'
     15
                        , 4326 ) as GEO
     16
                   PASS demo.dbo.msft Adressen A
     17
           From
           join
                   Geo OpenGeoDB.dbo.tbl DE PLZ G
     18
                   A.PLZ = G.PLZ
     19
           0n
     20
100 %
Results
          Spatial results hessages
       Niederlassung
                                    ( lon
                                                       lat
                                                                         GEO
       Geschäftsstelle Hamburg
                                      9.91241594212577
                                                       53.5699918540556
1
                                                                         0xE6100000010CDE133A7EF5C84A40F58EAF2E28D32340
       Geschäftsstelle Köln
                                      6.95555962327279
                                                        50.9329782103951
                                                                         0xE6100000010C87C37AD46B774940BF56CD387ED21B40
                                                       49.3027561421671
 3
       Geschäftsstelle Walldorf
                                      8.63382722262286
                                                                         0xE6100000010CAAA298B6C0A648409BF5700085442140
       Geschäftsstelle Böblingen
                                                       48.6804128249709
                                                                         0xE6100000010CB68377C4175748406A9431C7B2F42140
                                      8.97792646866056
       Geschäftsstelle München
5
                                      11.5584827447407
                                                       48 2776345979618
                                                                         0xE6100000010CF53DCF878923484050154873F11D2740
 6
       Geschäftsstelle Berlin
                                      13.3462538795073
                                                        52.5096066309895
                                                                         0xE6100000010C5BF642CA3A414A40A731413048B12A40
 7
       Geschäftsstelle Bad Homburg
                                      8.65810683360151
                                                       50.2220208056708
                                                                         0xE6100000010C9FB1812D6B1C4940692FFF60F3502140
```

>> SQL geography



>> SQL geometrie

```
P2 P3 P4
                                                             P1
                                    P1
   □DECLARE @A geometry = 'Polygon ((1 1,3 1,3 2,1 2,1 1)) ';
3
    DECLARE @B geometry = ' Polygon (( 4 1 , 6 1 , 6 2 , 4 2 , 4 1 )) ' ;
    DECLARE @C geometry = ' Polygon (( 7 1 , 9 1 , 9 2 , 7 2 , 7 1 )) ';
4
 5
 6
    DECLARE @E geometry = ' Polygon (( 1 3.5 , 3 3.5 , 3 4.5 , 1 4.5 , 1 3.5 )) ' ;
7
    DECLARE @F geometry = ' Polygon (( 4 3.5 , 6 3.5 , 6 4.5 , 4 4.5 , 4 3.5 )) ';
    DECLARE @G geometry = ' Polygon (( 7 3.5 , 9 3.5 , 9 4.5 , 7 4.5 , 7 3.5 )) ';
8
9
10
    DECLARE @J geometry = ' Polygon (( 1 6 , 3 6 , 3 7 , 1 7 , 1 6 )) ' ;
    DECLARE @K geometry = ' Polygon (( 4 6 , 6 6 , 6 7 , 4 7 , 4 6 )) ';
11
    DECLARE @L geometry = ' Polygon (( 7 6 , 9 6 , 9 7 , 7 7 , 7 6 )) ' ;
12
```


>> SQL geometrie

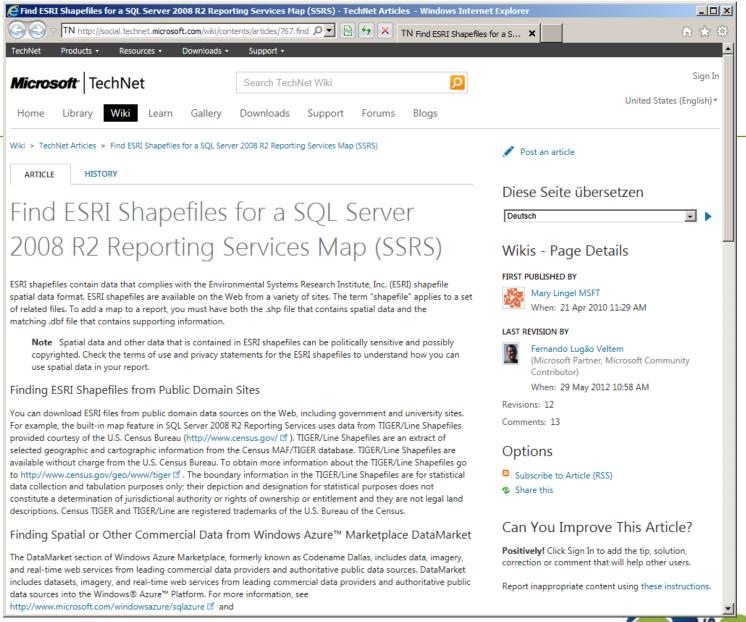
SQL geography more details

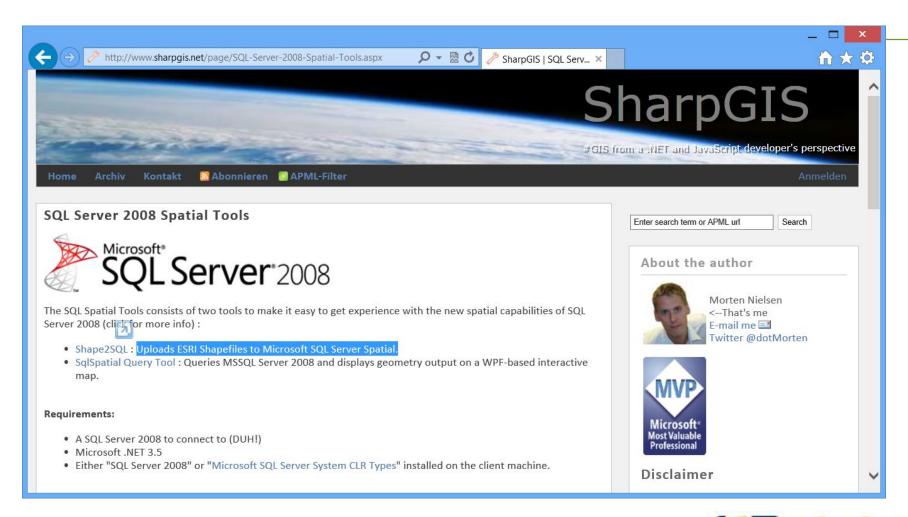
- geography Objects
 - Points / Lines / Polygones
- geography Methodes
 - geo.STGeomFromText()
 - geo.STBuffer()
- extended Methods
- http://msdn.microsoft.com/en-us/library/bb933968.aspx
- geography Indexes
- http://technet.microsoft.com/de-de/library/bb964712(v=sql.105).aspx

ESRI - shapefiles

visualization

Environmental Systems Research Institute, Inc. (esri), in Redlands, California




ESRI - shapefiles

visualization

- File structure
 - .shp used to store the geometry data
 - .dbf attribute data in dBase format
 - .shx is used as an indexfile (optional)

shapefiles "make or buy"

self made

or

buyLUTUM+TAPPERTGEOMARKETING.DE

Global Administrative Areas

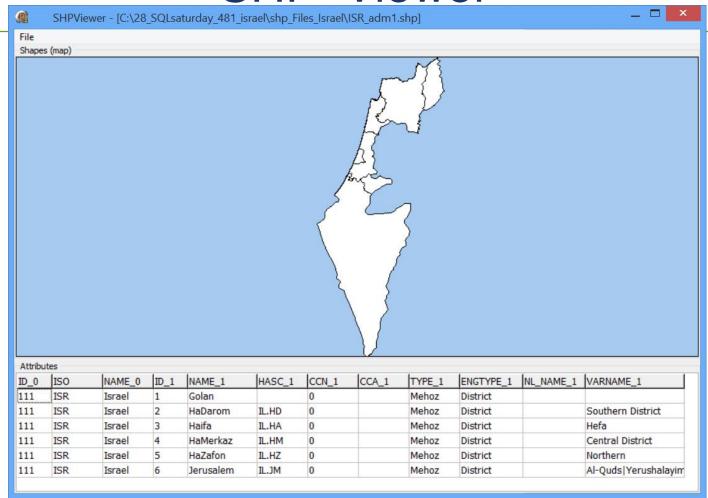
Boundaries without limits

Download

Known problems

About

Contact


Home

Download

Country: Israel Format: shapefile

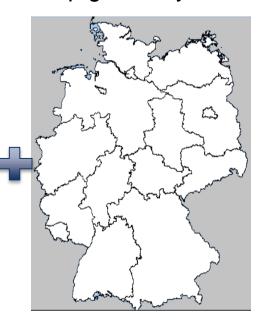
SHP Viewer

Userdata

JOIN

JOIN

Shapefiles


geo-data userdata

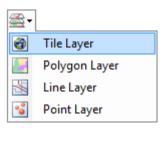
Ort	Bundesland
Unterschleißheim	Bayem
Böblingen	Baden-Württemberg
Hamburg	Hamburg
Berlin	Berlin
Köln	Nordrhein-Westfalen
Bad Hamburg	Hessen
Walldorf	Baden-Württemberg

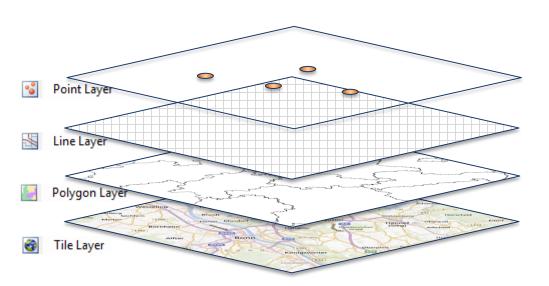
.shp attribute data

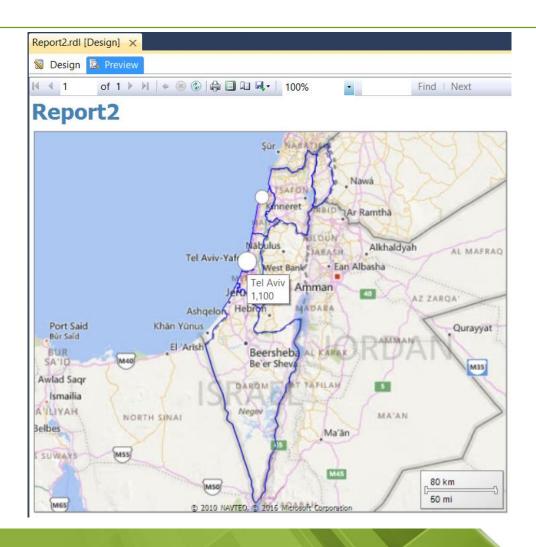
Name	Key
Schleswig-Holstein	01
Hamburg	02
Niedersachsen	03
Bremen	04
Nordrhein-Westfalen	05
Hessen	06
Rheinland-Pfalz	07
Baden-Württemberg	08
Bayern	09
Saarland	10
Berlin	11

.shp geometry data

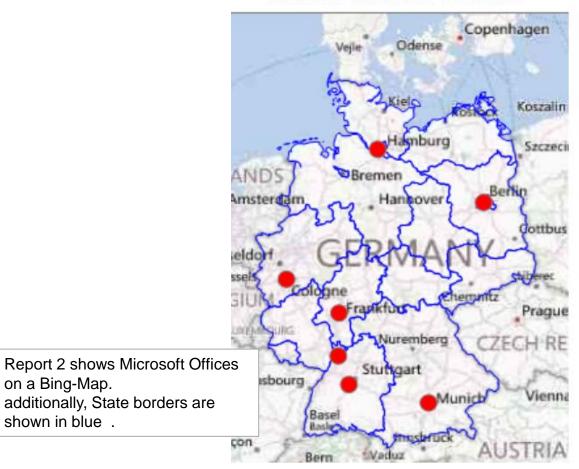
Map Types

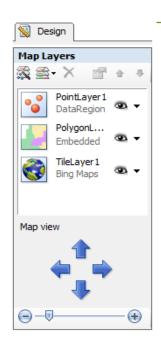

Wizard Icon	Layer style	Layer Type					
	Basic Map	Polygon	E STORY	Basic Marker Map	Point	Basic Line Map	3/17
	Color Analytical Map	Polygon		Bubble Marker Map	Point	Analytical Line Map	
	Bubble Map	Polygon		Analytical Marker Map	Point	1	


http://technet.microsoft.com/en-us/library/ee210528.aspx

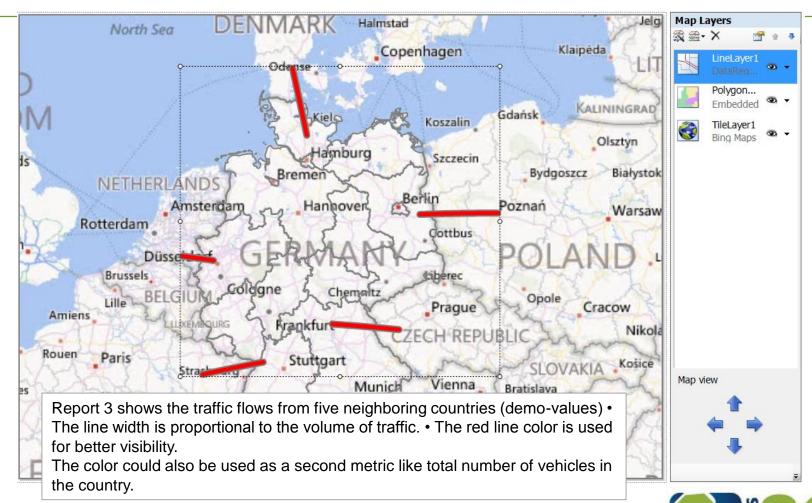

Map Layers

DEMO PASS

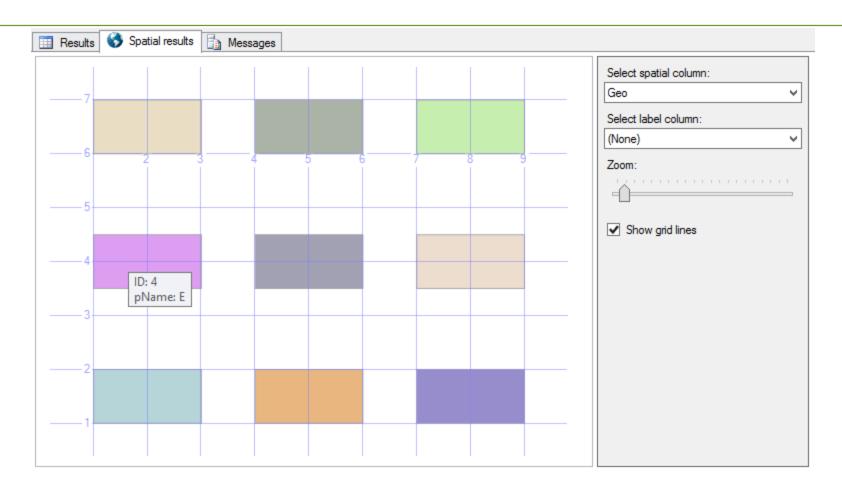



on a Bing-Map.

shown in blue .

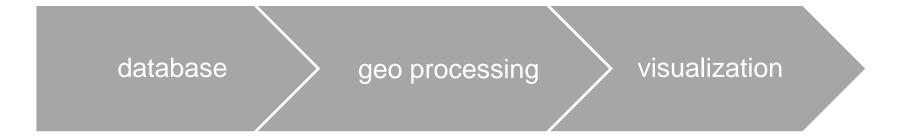

additionally, State borders are

Deutsche Microsoft Standorte




```
P2
                                                 P3
                                                       P4
                                                              P1
                                     P1
   □DECLARE @A geometry = 'Polygon ((1 1, 3 1, 3 2, 1 2, 1 1)) ';
3
    DECLARE @B geometry = ' Polygon (( 4 1, 6 1, 6 2, 4 2, 4 1)) ';
    DECLARE @C geometry = ' Polygon (( 7 1 , 9 1 , 9 2 , 7 2 , 7 1 )) ';
4
 5
    DECLARE @E geometry = ' Polygon (( 1 3.5 , 3 3.5 , 3 4.5 , 1 4.5 , 1 3.5 )) ' ;
    DECLARE @F geometry = ' Polygon (( 4 3.5 , 6 3.5 , 6 4.5 , 4 4.5 , 4 3.5 )) ' ;
8
    DECLARE @G geometry = ' Polygon (( 7 3.5 , 9 3.5 , 9 4.5 , 7 4.5 , 7 3.5 )) ';
9
10
    DECLARE @J geometry = ' Polygon (( 1 6 , 3 6 , 3 7 , 1 7 , 1 6 )) ' ;
    DECLARE @K geometry = ' Polygon (( 4 6 , 6 6 , 6 7 , 4 7 , 4 6 )) ';
11
    DECLARE @L geometry = ' Polygon (( 7 6 , 9 6 , 9 7 , 7 7 , 7 6 )) ';
12
```

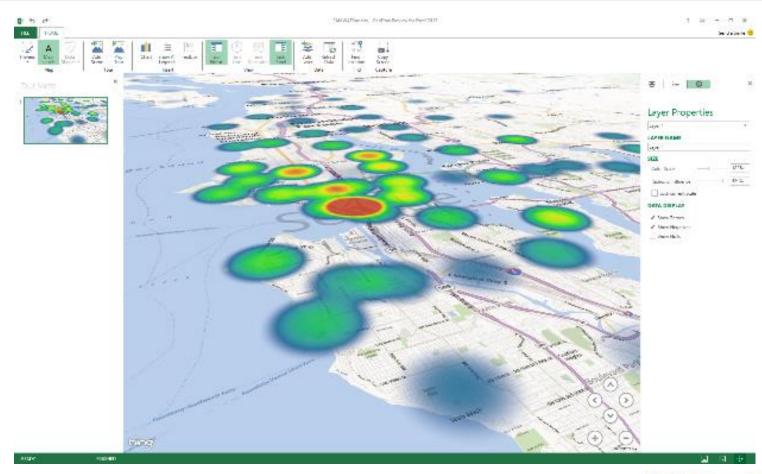

Unsere Lösung berechnet auf Basis der Längen- und Breitengrade jeder PLZ die zugehörigen Entfernungen.


Kunden No	PLZ Ort		Distance			
32	73479	Ellwangen (Jagst)				
30	91550	Dinkelsbühl	15 km			
31	74564	Crailsheim	20 km			
33	89551	Königsbronn	25 km			
20	86720	Nördlingen	26 km			

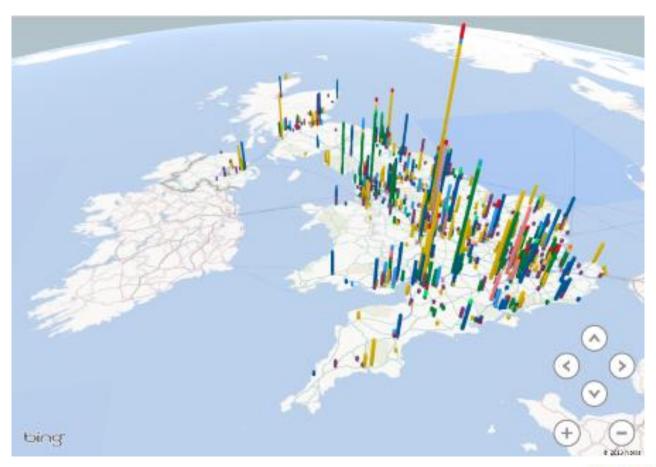
Landkarte 3: Detail zoom-Level 10 km

Das obige Beispiel zeigt 4 umliegende Orte in jeweils verschiedenen Leitbereichen. Hierbei betragen die Entfernungen weniger als 30 km vom Ausgangsort Ellwangen.

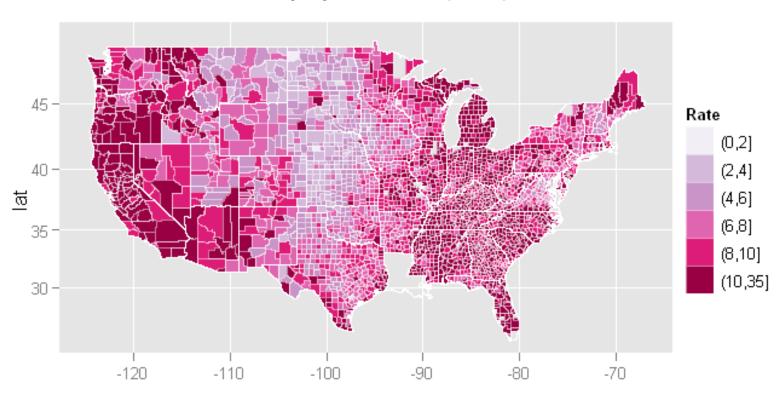
Summary


upcoming Solutions

- Microsoft Power Map
- statistical software



upcoming Solutions Power Map


upcoming Solutions Power Map

upcoming Solutions with R

US Unemployment Data (2010)

Questions??

Please fill evaluation forms

Fill out this form and put it in the box at the prize table for a chance to win something SUPER!

Name:

How was the overall event? (5= great)	5	4	3	2	1
Is this your first time at a SQL Saturday?				No	
How was lunch? (5= great)	5	4	3	2	1
How was your registration experience?	5	4	3	2	1
What do you think of the venue?			3	2	1
How many sponsors did you visit today?					
What was your favorite session?					
Who was your favorite speaker?					
What speaker do you think needs improvem	ent	?			
What could we do better next time?					
What could we do better next time?					

Thank you for taking the time to fill out this form. Good luck!

Please continue comments on the back

	L	ı Evaluation
saturd	ay Sessio r	າ Evaluation

Please fill out this form and turn it in to the proctor. Session Title: ____ Presenter: Did you enjoy the session? Yes It was OK How was the quality of the session? (5= great) 5 4 3 2 1 How was the expertise of the speaker? (5= great) 5 4 3 2 1 What drew you to this specific session? Did you learn what you expected to learn? What could the speaker do differently to improve? How will you use the information you learned here?

Please continue comments on the back Thank you for taking the time to fill out this form.

Special thanks to our great sponsors!

In partnership with

